Longest Common Subsequence
E-OLYMP 1618. The longest Common Subsequence Two sequences of integers are given. Find the length of their longest common subsequence (the subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements).

► A subsequence of a sequence is a set of elements that appear in left-to-right order, but not necessarily consecutively. A subsequence can be derived from a sequence only by deletion of some elements.
· For example, consider the sequence {2, 1, 3, 5}. Then
· {1, 5}, {2}, {2, 3, 5} are subsequences;
· {5, 1}, {2, 3, 1} are not subsequences;
A common subequence of two sequences is a subsequence that appears in both sequences. A longest common subequence (lcs) is a common subsequence of maximal length.
For example, the longest common subequence of {1, 2, 3} and {2, 1, 3, 5} can be {1, 3} or {2, 3}. The length of lcs is 2.
Let f(i, j) be the length of the longest common subsequence of sequences x1x2…xi and y1y2…yj.

If xi yj, then we find lcs among x1x2…xi and y1y2…yj-1, and also among x1x2…xi-1 and y1y2…yj. Return the biggest value:
f(i, j) = max(f(i, j – 1), f(i – 1, j))

[image: image1.emf]x

1

x

2

...x

i

y

1

y

2

...y

j

=

y

j-1

x

i-1

MAX (

x

1

x

2

...

y

1

y

2

...y

j

y

j-1

x

i-1

x

1

x

2

...x

i

y

1

y

2

...y

j-1

x

i-1

,

)

If xi = yj, then we find lcs among x1x2…xi-1 and y1y2…yj-1:

f(i, j) = 1 + f(i – 1, j – 1)

[image: image2.emf]x

1

x

2

...x

i

y

1

y

2

...y

j

=+ 1

y

j-1

x

i-1

x

1

x

2

...

y

1

y

2

...y

j-1

x

i-1

If one of the sequences is empty, then their lcs is empty:

f(0, j) = f(i, 0) = 0
Let’s summarize the recurrence relation:

[image: image3.wmf]ï

î

ï

í

ì

=

=

=

+

-

-

¹

-

-

=

0

0

,

0

,

1

)

1

,

1

(

)),

,

1

(

),

1

,

(

max(

)

,

(

j

or

i

y

x

j

i

f

y

x

j

i

f

j

i

f

j

i

f

j

i

j

i

The values f(i, j) will be stored in array m[0..1000, 0..1000], where m[0][i] = m[i][0] = 0. Each next line of array m[i][j] is calculated through the previous one. Therefore, to find the answer, it is enough to keep in memory only two lines of length 1000.
Let X = abcdgh, Y = aedfhr. The the longest common subsequence is adh, its length equals to f(6, 6) = 3.

[image: image4.emf]abcdgh

123456

X

0

0

1

Y

a

2

3

e

d

4f

5

6

h

r

f(i, j)

0000000

1(a)

111110

1111101

11

2(d)

2201

1122201

1122

3(h)

01

1122301

f(6, 6) = max(f(6, 5), f(5, 6)) = max(2, 3) = 3, because Y[6] = r ≠ h = X[6].

f(5, 6) = 1 + f(4, 5) = 1 + 2 = 3, because Y[5] = h = X[6].

Arrays x and y contain input sequences, n and m are their lengths. Array mas contains two last lines of dynamic calculations.

#define SIZE 1010

int x[SIZE], y[SIZE], mas[2][SIZE];

Main part of the program. Read input sequences to arrays, starting from the first index. Then read the data into x[1..n] and y[1..m].

scanf("%d",&n);

for(i = 1; i <= n; i++) scanf("%d",&x[i]);

scanf("%d",&m);

for(i = 1; i <= m; i++) scanf("%d",&y[i]);

Fill array mas with zeroes. Dynamically calculate the values f(i, j). Initially mas[0][j] contains the values f(0, j). Then put into mas[1][j] the values f(1, j). Since to calculate f(2, j) it is enough to have the values of the previous row of mas array, the values of f(2, j) can be stored in mas [0][j], the values of f(3, j) in mas [1][j] and so on.
memset(mas,0,sizeof(mas));

for(i = 1; i <= n; i++)

for(j = 1; j <= m; j++)

 if (x[i] == y[j])

 mas[i%2][j] = 1 + mas[(i+1)%2][j-1];

 else

 mas[i%2][j] = max(mas[(i+1)%2][j],mas[i%2][j-1]);

Print the answer, that is located in the cell mas[n][m]. Take the first argument modulo 2.
printf("%d\n",mas[n%2][m]);

E-OLYMP 1079. Removing the letters You are given two words (each word consists of upper-case English letters). Delete some letters from each word so that the resulting words become equal.

Find the maximum possible length of the resulting word.

► The answer to the problem is the length of the longest common subsequence (LCS) of input sequences of uppercase Latin letters.
Let f(i, j) be the longest common subsequence of sequences x1x2…xi and y1y2…yj.

If xi yj, then find LCS between x1x2…xi-1 and y1y2…yj, and also between x1x2…xi and y1y2…yj-1. Return the largest of them:

f(i, j) = max(f(i, j – 1), f(i – 1, j))

If xi = yj, then find LCS between x1x2…xi-1 and y1y2…yj-1:

f(i, j) = 1 + f(i – 1, j – 1)

The values f(i, j) will be stored in array m[0.. SIZE, 0.. SIZE], where m[0][i] = m[i][0] = 0. Since the length of words is no more than 200 characters then assign SIZE = 201.

Each next line of array m[i][j] is calculated through the previous one. Therefore, to find the answer, it is enough to keep only two lines in memory.
Here is given the largest common subsequences for samples.

[image: image5.emf]AAABBB

ABABAB

ABBB

AXYAAZ

CXCYCZ

XYZ

E-OLYMP 4260. LCS - 2 Two strings are given. Find and print their longest common subsequence.

► In the problem you must find the largest common subsequence (LCS) of two strings and print it.
Construct an array dp, where dp[i][j] is the length of LCS of strings x[1…i] and y[1…j]. The value of dp[n][m] equals to the length of LCS of input strings (|x| = n, |y| = m). Move through the matrix dp from the cell (n, m) to (0, 0). For the current position (i, j) we have:
· If symbols xi and yj are the same, then this character must be present in the LCS, store it into the resulting string res. Move in array dp from cell (i, j) to cell (i – 1, j – 1), that is, then construct LCS (x[1…i – 1], y[1…j – 1]).
· If symbols xi and yj are different, then we can move in array dp from cell (i, j) either to cell (i, j – 1) or to cell (i – 1, j). Since the largest subsequence is being built, the transition should be made to the cell where the value is greater. If dp[i – 1][j] = dp[i][j – 1], we can go to any of the specified cells.
Find the LCS for two string given in a sample.

[image: image6.emf]abacab

123456

X

0

0

1

Y

d

2

3

a

c

4a

5

6

b

c

dp[i][j]

0000000

0

000000

1111101

11

2

2201

1223301

2222

4

01

2233401

a

7

0

0

1

2

3

4

4

We start to search the LCS from position (i, j) = (6, 7).
y[6] ≠ x[7], move to any adjacent cell with the maximum value. For example to (5, 7).
y[5] ≠ x[7], move to (5, 6).

y[5] = x[6] = ‘b’, move diagonally, include letter ‘b’ to LCS.
Declare the inut strings x and y. To find their LCS declare dp array.
#define MAX 1001

int dp[MAX][MAX];

string x, y, res;

Read the input lines. Add a space to them so that the indexing will start from 1.
cin >> x; n = x.length(); x = " " + x;

cin >> y; m = y.length(); y = " " + y;

Finding the longest common subsequence.
for (i = 1; i <= n; i++)

for (j = 1; j <= m; j++)

 if (x[i] == y[j])

 dp[i][j] = dp[i - 1][j - 1] + 1;

 else
 dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

Construct the LCS in the string res.
i = n; j = m;

while (i >= 1 && j >= 1)

 if (x[i] == y[j])

 {
 res = res + x[i];

 i--; j--;

 }

 else
 {

 if (dp[i - 1][j] > dp[i][j - 1])

 i--;

 else
 j--;

 }

Invert and print the resulting string.

reverse(res.begin(), res.end());

cout << res << endl;

E-OLYMP 1765. Three sequences Three sequences of integers are given. Find the length of their longest common subsequence.

► Let a, b, c be three input sequences. Let f(i, j, k) be the length of LCS of sequences a[1..i], b[1..j] and c[1..k]. The value f(i, j, k) we shall keep in dp[i][j][k].

If a[i] = b[j] = c[k], then

f(i, j, k) = 1 + f(i – 1, j – 1, k – 1)

Otherwise

f(i, j, k) = max(f(i – 1, j, k), f(i, j – 1, k), f(i, j, k – 1))
_1580035854.vsd
x1

x2

...

xi

y1

y2

...

yj

=

yj-1

xi-1

MAX (

x1

x2

...

y1

y2

...

yj

yj-1

xi-1

x1

x2

...

xi

y1

y2

...

yj-1

xi-1

,

)

_1662564769.vsd
A

A

A

B

B

B

A

B

A

B

A

B

A

B

B

B

A

X

Y

A

A

Z

C

X

C

Y

C

Z

X

Y

Z

_1662825695.vsd
a

b

a

c

a

b

1

2

3

4

5

6

X

0

0

1

Y

d

2

3

a

c

4

a

5

6

b

c

dp[i][j]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

1

1

2

2

2

0

1

1

2

2

3

3

0

1

2

2

2

2

4

0

1

2

2

3

3

4

0

1

a

7

0

0

1

2

3

4

4

_1660333824.unknown

_1544790431.vsd
x1

x2

...

xi

y1

y2

...

yj

=

x1

x2

...

y1

y2

...

yj-1

+ 1

xi-1

yj-1

xi-1

_1544789747.vsd
a

b

c

d

g

h

1

2

3

4

5

6

X

0

0

1

Y

a

2

3

e

d

4

f

5

6

h

r

f(i, j)

0

0

0

0

0

0

0

1(a)

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

2(d)

2

2

0

1

1

1

2

2

2

0

1

1

1

2

2

3(h)

0

1

1

1

2

2

3

0

1

